Blender学习资料

Blender学习资料

零基础BLENDER2.8中文开源系统快速入门教程\

官方中文教程 https://docs.blender.org/manual/zh-hans/dev/interface/index.html

台湾大神的blender教程全集 https://www.bilibili.com/video/av909518 https://www.bilibili.com/video/av11035426

Blender tutorials and quick tips by Gleb Alexandrov https://www.youtube.com/playlist?list=PL2aDImegRwZGd78IasKwZ8B7qvjS_fx_X

BlenderGuru Blender Beginner Tutorial Series https://www.youtube.com/playlist?list=PLjEaoINr3zgHs8uzT3yqe4iHGfkCmMJ0P

视频下载

youtube-dl --write-sub --convert-subs srt --sub-lang en,zh,zh-CN --proxy socks5://127.0.0.1:1080  -f bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4 https://www.youtube.com/playlist?list=PLjEaoINr3zgHs8uzT3yqe4iHGfkCmMJ0P

youtube-dl --write-sub --convert-subs srt --all-subs --proxy socks5://127.0.0.1:1080  -f bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4 https://www.youtube.com/playlist?list=PLjEaoINr3zgHs8uzT3yqe4iHGfkCmMJ0P


youtube-dl --write-sub --convert-subs srt --sub-lang en,zh,zh-CN --proxy socks5://127.0.0.1:1080 -f bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4 https://www.youtube.com/playlist?list=PL2aDImegRwZGd78IasKwZ8B7qvjS_fx_X

Virtualbox安装配置alpine

1.安装virtualbox

2.安装alpine linux

参考 https://wiki.alpinelinux.org/wiki/Install_Alpine_on_VirtualBox

    apk add nano vim curl wget git mercurial subversion
    curl https://j.mp/spf13-vim3 -L > spf13-vim.sh && sh spf13-vim.sh
    nano /etc/ssh/sshd_config
    rc-service sshd restart

服务管理 https://wiki.alpinelinux.org/wiki/Alpine_Linux_Init_System

3.在alpine linux中安装共享文件夹支持

参考 https://wiki.alpinelinux.org/wiki/VirtualBox_shared_folders

echo "http://dl-cdn.alpinelinux.org/alpine/edge/community" >> /etc/apk/repositories
apk update
apk add virtualbox-guest-additions virtualbox-guest-modules-virt

4.在alpine linux中安装Docker

参考 https://wiki.alpinelinux.org/wiki/Docker

CentOS服务器安装配置

CentOS服务器安装配置

设置主机名 hostnamectl set-hostname gntyxg.cn

hostnamectl set-hostname hong.hntyxg.cn

安装git hg svn

安装v2ray https://www.v2ray.com/chapter_00/install.html

安装openvpn https://github.com/Nyr/openvpn-install

安装 mono https://www.mono-project.com/download/stable/#download-lin-centos

安装 dotnet core https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-current

安装caddy https://caddyserver.com/docs/install#fedora-redhat-centos

https://3mile.github.io/archives/118/

journalctl -xe

安装gitea https://raw.githubusercontent.com/go-gitea/gitea/master/contrib/systemd/gitea.service

机器学习笔记

ML

资料整理

机器学习课程 CS229 网易公开课_吴恩达_机器学习_2008 CS229 课程讲义中文翻译 斯坦福机器学习笔记 机器学习第九期 数据挖掘十大算法详解 机器学习基础:案例研究 神经网络_fast.ai 西瓜书 南瓜书 机器学习实践

https://www.csie.ntu.edu.tw/~htlin/

1.常见问题

  1. 监督学习与非监督学习
  2. 参数学习与非参数学习
  3. 判定模型与生成模型

https://www.zhihu.com/question/20446337/answer/45130939

 

我是这样理解的: 

生成模型,就是生成(数据的分布)的模型; 

判别模型,就是判别(数据输出量)的模型; 

更进一步: 

从结果角度,两种模型都能给你 输出量(label 或 y etc.)。 

但,生成模型的处理过程会告诉你关于数据的一些统计信息(p(x|y) 分布 etc.),更接近于统计学; 

而 判别模型则是通过一系列处理得到结果,这个结果可能是概率的或不是,这个并不改变他是不是判别的。 

如,决策树的if then说不是这个就是那个(而很多属性都是有分布的)【即分支】,明显是一种 判别 嘛; 

而朴素贝叶斯说,p( cancer , fat ) = x% etc.,模型 生成 了一个分布给你了,即使你没意识到/没用到,只用到 p( cancer | fat ) = y% 这个最终的判别。 

你再理解一下: 

k近邻法、感知机、逻辑斯谛回归模型、最大熵模型、支持向量机、提升方法是判别模型; 

隐马尔可夫模型(重点的EM算法)是生成模型。 
graph LR
    A[Hard edge] -->|Link textQQ  | B(Round edge)
    B --> C{Decision}
    C -->|One| D[Result one]
    C -->|Two| E[Result two]

2.常用算法

2.1 线性回归

2.1.1 局部加权线性回归

https://blog.csdn.net/Allenalex/article/details/16370245 
https://blog.csdn.net/tianse12/article/details/70161591 
https://blog.csdn.net/herosofearth/article/details/51969517 

2.1.2 广义线性模型

2.2 逻辑回归

2.2.1 SoftMax回归

2.3 感知器算法

生成学习算法

高斯判别分析

朴素贝叶斯

垃圾邮件分类
Laplcae平滑

SVM(支持向量机)

KNN(K近邻算法)

https://blog.csdn.net/suipingsp/article/details/41964713

Wireshark查看网络通讯数据包

过滤条件窗口输入 目标主机的IP和Port组合条件即可,如下

(ip.dst == 127.0.0.1 and tcp.dstport == 9090) or (ip.src == 127.0.0.1 and tcp.srcport == 9090)

关于localhost通讯抓包 要求卸载winpcap 安装npcap 效果如图 图片

线性回归

线性回归

1.线性回归数学

\begin{aligned} J(\theta)=\frac 1 m \sum^{m}{i=1} \frac 1 2 (h{\theta}(x^{(i)})-y^{(i)})^2 \end{aligned} $$

# -*- coding: utf-8 -*-
"""
Created on Sat Jun  9 08:18:10 2018

@author: [email protected]
"""
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation as amat

def loadDataSet(fileName):
    """从文本文件加载数据.

    文件内容格式.

    Args:
        path: 传入文件名称.

    Returns:
        返回一个参数矩阵x和一个结论列向量y. 
    
    """
    dataX=[];dataY=[]
    fr=open(fileName)
    for line in fr.readlines():
        dataArr= []
        for item in  line.strip().split('\t'):
            dataArr.append(float(item))
       
        dataX.append( dataArr[0:-1])
        dataY.append( dataArr[-1])
    
    print(dataX)
    print(dataY)
    return np.array( dataX),np.array(dataY)

def dataNomalize(dataX,dataY):
    """对数据进行归一化处理.

    文件内容格式.

    Args:
        matriX: 参数组成的矩阵x,每行为一组样本个例参数.
        vertY: 结论值组成的向量y.

    Returns:
        返回归一化后的一个参数矩阵x和一个结论列向量y
    
    """
    m,n=np.shape(dataX)
    colMaxMin=[dataX.max(axis=0),dataX.min(axis=0)]

    for i in range(m):
        for j in range(n):
            #print (i,j,dataX[i][j])
            dataX[i][j]= (dataX[i][j]-colMaxMin[1][j])/colMaxMin[0][j]

    minY=dataY.min();maxY=dataY.max()

    for i in range(len(dataY)):
        dataY[i]=(dataY[i]-minY)/maxY

    print(dataX)
    print(dataY)
    return dataX,dataY

def computeCost(x,y,theta):
    m = y.shape[0]
#     J = (np.sum((X.dot(theta) - y)**2)) / (2*m)
    C = x.dot(theta) - y
    J2 = (C.T.dot(C))/ (2*m)
    return J2

def batchGradientDescent(dataX,dataY):
    matX=np.mat(dataX)
    matY=np.mat(dataY).transpose()
    m,n=np.shape(matX)
    alpha=0.001
    theta=np.ones((n,1))
    maxTimes=500
    for k in range(maxTimes):
        theta=theta-(alpha/m)*(np.dot(matX.T,np.dot(matX,theta)-matY))
        cost=computeCost(matX,matY,theta)
        print(theta,cost)
    return theta

def stochastieGradientDeccent():
    return 3

def miniBatchGradientDescent():
    return 4

if __name__ == '__main__':
    dataX,dataY=loadDataSet('house_prize.txt')
    dataX,dataY=dataNomalize(dataX,dataY)
    batchGradientDescent(dataX,dataY)

Mathjax测试

Hugo Mathjax测试

c^{2} = a^{2} + b^{2}.
graph LR;
    A[Hard edge] -->|Link text| B(Round edge)
    B --> C{Decision}
    C -->|One| D[Result one]
    C -->|Two| E[Result two]
graph LR; A[Hard edge] -->|Link text| B(Round edge) B --> C{Decision} C -->|One| D[Result one] C -->|Two| E[Result two]
graph LR sid-B3655226-6C29-4D00-B685-3D5C734DC7E1[" 提交申请 熊大 "]; class sid-B3655226-6C29-4D00-B685-3D5C734DC7E1 node-executed; sid-4DA958A0-26D9-4D47-93A7-70F39FD7D51A[" 负责人审批 强子 "]; class sid-4DA958A0-26D9-4D47-93A7-70F39FD7D51A node-executed; sid-E27C0367-E6D6-497F-9736-3CDC21FDE221[" DBA审批 强子 "]; class sid-E27C0367-E6D6-497F-9736-3CDC21FDE221 node-executed; sid-BED98281-9585-4D1B-934E-BD1AC6AC0EFD[" SA审批 阿美 "]; class sid-BED98281-9585-4D1B-934E-BD1AC6AC0EFD node-executed; sid-7CE72B24-E0C1-46D3-8132-8BA66BE05AA7[" 主管审批 光头强 "]; class sid-7CE72B24-E0C1-46D3-8132-8BA66BE05AA7 node-executed; sid-A1B3CD96-7697-4D7C-BEAA-73D187B1BE89[" DBA确认 强子 "]; class sid-A1B3CD96-7697-4D7C-BEAA-73D187B1BE89 node-executed; sid-3E35A7FF-A2F4-4E07-9247-DBF884C81937[" SA确认 阿美 "]; class sid-3E35A7FF-A2F4-4E07-9247-DBF884C81937 node-executed; sid-4FC27B48-A6F9-460A-A675-021F5854FE22[" 结束 "]; class sid-4FC27B48-A6F9-460A-A675-021F5854FE22 node-executed; sid-19DD9E9F-98C1-44EE-B604-842AFEE76F1E[" SA执行1 强子 "]; class sid-19DD9E9F-98C1-44EE-B604-842AFEE76F1E node-executed; sid-6C2120F3-D940-4958-A067-0903DCE879C4[" SA执行2 强子 "]; class sid-6C2120F3-D940-4958-A067-0903DCE879C4 node-executed; sid-9180E2A0-5C4B-435F-B42F-0D152470A338[" DBA执行1 强子 "]; class sid-9180E2A0-5C4B-435F-B42F-0D152470A338 node-executed; sid-03A2C3AC-5337-48A5-B154-BB3FD0EC8DAD[" DBA执行3 强子 "]; class sid-03A2C3AC-5337-48A5-B154-BB3FD0EC8DAD node-executed; sid-D5E1F2F4-306C-47A2-BF74-F66E3D769756[" DBA执行2 强子 "]; class sid-D5E1F2F4-306C-47A2-BF74-F66E3D769756 node-executed; sid-8C3F2F1D-F014-4F99-B966-095DC1A2BD93[" DBA执行4 强子 "]; class sid-8C3F2F1D-F014-4F99-B966-095DC1A2BD93 node-executed; sid-1897B30A-9C5C-4D5B-B80B-76A038785070[" 负责人确认 梁静茹 "]; class sid-1897B30A-9C5C-4D5B-B80B-76A038785070 node-executed; sid-B3655226-6C29-4D00-B685-3D5C734DC7E1-->sid-7CE72B24-E0C1-46D3-8132-8BA66BE05AA7; sid-4DA958A0-26D9-4D47-93A7-70F39FD7D51A-->sid-1897B30A-9C5C-4D5B-B80B-76A038785070; sid-E27C0367-E6D6-497F-9736-3CDC21FDE221-->sid-A1B3CD96-7697-4D7C-BEAA-73D187B1BE89; sid-BED98281-9585-4D1B-934E-BD1AC6AC0EFD-->sid-3E35A7FF-A2F4-4E07-9247-DBF884C81937; sid-19DD9E9F-98C1-44EE-B604-842AFEE76F1E-->sid-6C2120F3-D940-4958-A067-0903DCE879C4; sid-9180E2A0-5C4B-435F-B42F-0D152470A338-->sid-D5E1F2F4-306C-47A2-BF74-F66E3D769756; sid-03A2C3AC-5337-48A5-B154-BB3FD0EC8DAD-->sid-8C3F2F1D-F014-4F99-B966-095DC1A2BD93; sid-6C2120F3-D940-4958-A067-0903DCE879C4-->sid-4DA958A0-26D9-4D47-93A7-70F39FD7D51A; sid-1897B30A-9C5C-4D5B-B80B-76A038785070-->sid-4FC27B48-A6F9-460A-A675-021F5854FE22; sid-3E35A7FF-A2F4-4E07-9247-DBF884C81937-->sid-19DD9E9F-98C1-44EE-B604-842AFEE76F1E; sid-A1B3CD96-7697-4D7C-BEAA-73D187B1BE89-->sid-9180E2A0-5C4B-435F-B42F-0D152470A338; sid-A1B3CD96-7697-4D7C-BEAA-73D187B1BE89-->sid-03A2C3AC-5337-48A5-B154-BB3FD0EC8DAD; sid-D5E1F2F4-306C-47A2-BF74-F66E3D769756-->sid-4DA958A0-26D9-4D47-93A7-70F39FD7D51A; sid-8C3F2F1D-F014-4F99-B966-095DC1A2BD93-->sid-4DA958A0-26D9-4D47-93A7-70F39FD7D51A; sid-7CE72B24-E0C1-46D3-8132-8BA66BE05AA7-->sid-BED98281-9585-4D1B-934E-BD1AC6AC0EFD; sid-7CE72B24-E0C1-46D3-8132-8BA66BE05AA7-->sid-E27C0367-E6D6-497F-9736-3CDC21FDE221; sid-3E35A7FF-A2F4-4E07-9247-DBF884C81937-->sid-6C2120F3-D940-4958-A067-0903DCE879C4; sid-7CE72B24-E0C1-46D3-8132-8BA66BE05AA7-->sid-4DA958A0-26D9-4D47-93A7-70F39FD7D51A; sid-7CE72B24-E0C1-46D3-8132-8BA66BE05AA7-->sid-4FC27B48-A6F9-460A-A675-021F5854FE22;
graph TD A[Christmas] -->|Get money| B(Go shopping) B --> C{Let me thinksssss
ssssssssssssssssssssss
sssssssssssssssssssssssssss} C -->|One| D[Laptop] C -->|Two| E[iPhone] C -->|Three| F[Car]
graph LR 47(SAM.CommonFA.FMESummary)-->48(SAM.CommonFA.CommonFAFinanceBudget) 37(SAM.CommonFA.BudgetSubserviceLineVolume)-->48(SAM.CommonFA.CommonFAFinanceBudget) 35(SAM.CommonFA.PopulationFME)-->47(SAM.CommonFA.FMESummary) 41(SAM.CommonFA.MetricCost)-->47(SAM.CommonFA.FMESummary) 44(SAM.CommonFA.MetricOutliers)-->47(SAM.CommonFA.FMESummary) 46(SAM.CommonFA.MetricOpportunity)-->47(SAM.CommonFA.FMESummary) 40(SAM.CommonFA.OPVisits)-->47(SAM.CommonFA.FMESummary) 38(SAM.CommonFA.CommonFAFinanceRefund)-->47(SAM.CommonFA.FMESummary) 43(SAM.CommonFA.CommonFAFinancePicuDays)-->47(SAM.CommonFA.FMESummary) 42(SAM.CommonFA.CommonFAFinanceNurseryDays)-->47(SAM.CommonFA.FMESummary) 45(SAM.CommonFA.MetricPreOpportunity)-->46(SAM.CommonFA.MetricOpportunity) 35(SAM.CommonFA.PopulationFME)-->45(SAM.CommonFA.MetricPreOpportunity) 41(SAM.CommonFA.MetricCost)-->45(SAM.CommonFA.MetricPreOpportunity) 41(SAM.CommonFA.MetricCost)-->44(SAM.CommonFA.MetricOutliers) 39(SAM.CommonFA.ChargeDetails)-->43(SAM.CommonFA.CommonFAFinancePicuDays) 39(SAM.CommonFA.ChargeDetails)-->42(SAM.CommonFA.CommonFAFinanceNurseryDays) 39(SAM.CommonFA.ChargeDetails)-->41(SAM.CommonFA.MetricCost) 39(SAM.CommonFA.ChargeDetails)-->40(SAM.CommonFA.OPVisits) 35(SAM.CommonFA.PopulationFME)-->39(SAM.CommonFA.ChargeDetails) 36(SAM.CommonFA.PremetricCost)-->39(SAM.CommonFA.ChargeDetails)
graph TD 9e122290_1ec3_e711_8c5a_005056ad0002("fa:fa-creative-commons My System | Test Environment") 82072290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs Shared Business Logic Server:Service 1") db052290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs Shared Business Logic Server:Service 2") 4e112290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs Shared Report Server:Service 1") 30122290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs Shared Report Server:Service 2") 5e112290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs Dedicated Test Business Logic Server:Service 1") c1112290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs Dedicated Test Business Logic Server:Service 2") b7042290_1ec3_e711_8c5a_005056ad0002("fa:fa-circle [DBServer\SharedDbInstance].[SupportDb]") 8f102290_1ec3_e711_8c5a_005056ad0002("fa:fa-circle [DBServer\SharedDbInstance].[DevelopmentDb]") 0e102290_1ec3_e711_8c5a_005056ad0002("fa:fa-circle [DBServer\SharedDbInstance].[TestDb]") 07132290_1ec3_e711_8c5a_005056ad0002("fa:fa-circle [DBServer\SharedDbInstance].[SharedReportingDb]") c7072290_1ec3_e711_8c5a_005056ad0002("fa:fa-server Shared Business Logic Server") ca122290_1ec3_e711_8c5a_005056ad0002("fa:fa-server Shared Report Server") 68102290_1ec3_e711_8c5a_005056ad0002("fa:fa-server Dedicated Test Business Logic Server") f4112290_1ec3_e711_8c5a_005056ad0002("fa:fa-database [DBServer\SharedDbInstance]") d6072290_1ec3_e711_8c5a_005056ad0002("fa:fa-server DBServer") 71082290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs DBServer\:MSSQLSERVER") c0102290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs DBServer\:SQLAgent") 9a072290_1ec3_e711_8c5a_005056ad0002("fa:fa-cogs DBServer\:SQLBrowser") 1d0a2290_1ec3_e711_8c5a_005056ad0002("fa:fa-server VmHost1") 200a2290_1ec3_e711_8c5a_005056ad0002("fa:fa-server VmHost2") 1c0a2290_1ec3_e711_8c5a_005056ad0002("fa:fa-server VmHost3") 9e122290_1ec3_e711_8c5a_005056ad0002-->82072290_1ec3_e711_8c5a_005056ad0002 9e122290_1ec3_e711_8c5a_005056ad0002-->db052290_1ec3_e711_8c5a_005056ad0002 9e122290_1ec3_e711_8c5a_005056ad0002-->4e112290_1ec3_e711_8c5a_005056ad0002 9e122290_1ec3_e711_8c5a_005056ad0002-->30122290_1ec3_e711_8c5a_005056ad0002 9e122290_1ec3_e711_8c5a_005056ad0002-->5e112290_1ec3_e711_8c5a_005056ad0002 9e122290_1ec3_e711_8c5a_005056ad0002-->c1112290_1ec3_e711_8c5a_005056ad0002 82072290_1ec3_e711_8c5a_005056ad0002-->b7042290_1ec3_e711_8c5a_005056ad0002 82072290_1ec3_e711_8c5a_005056ad0002-->8f102290_1ec3_e711_8c5a_005056ad0002 82072290_1ec3_e711_8c5a_005056ad0002-->0e102290_1ec3_e711_8c5a_005056ad0002 82072290_1ec3_e711_8c5a_005056ad0002-->c7072290_1ec3_e711_8c5a_005056ad0002 db052290_1ec3_e711_8c5a_005056ad0002-->c7072290_1ec3_e711_8c5a_005056ad0002 db052290_1ec3_e711_8c5a_005056ad0002-->82072290_1ec3_e711_8c5a_005056ad0002 4e112290_1ec3_e711_8c5a_005056ad0002-->b7042290_1ec3_e711_8c5a_005056ad0002 4e112290_1ec3_e711_8c5a_005056ad0002-->8f102290_1ec3_e711_8c5a_005056ad0002 4e112290_1ec3_e711_8c5a_005056ad0002-->0e102290_1ec3_e711_8c5a_005056ad0002 4e112290_1ec3_e711_8c5a_005056ad0002-->07132290_1ec3_e711_8c5a_005056ad0002 4e112290_1ec3_e711_8c5a_005056ad0002-->ca122290_1ec3_e711_8c5a_005056ad0002 30122290_1ec3_e711_8c5a_005056ad0002-->ca122290_1ec3_e711_8c5a_005056ad0002 30122290_1ec3_e711_8c5a_005056ad0002-->4e112290_1ec3_e711_8c5a_005056ad0002 5e112290_1ec3_e711_8c5a_005056ad0002-->8f102290_1ec3_e711_8c5a_005056ad0002 5e112290_1ec3_e711_8c5a_005056ad0002-->68102290_1ec3_e711_8c5a_005056ad0002 c1112290_1ec3_e711_8c5a_005056ad0002-->68102290_1ec3_e711_8c5a_005056ad0002 c1112290_1ec3_e711_8c5a_005056ad0002-->5e112290_1ec3_e711_8c5a_005056ad0002 b7042290_1ec3_e711_8c5a_005056ad0002-->f4112290_1ec3_e711_8c5a_005056ad0002 8f102290_1ec3_e711_8c5a_005056ad0002-->f4112290_1ec3_e711_8c5a_005056ad0002 0e102290_1ec3_e711_8c5a_005056ad0002-->f4112290_1ec3_e711_8c5a_005056ad0002 07132290_1ec3_e711_8c5a_005056ad0002-->f4112290_1ec3_e711_8c5a_005056ad0002 c7072290_1ec3_e711_8c5a_005056ad0002-->1d0a2290_1ec3_e711_8c5a_005056ad0002 ca122290_1ec3_e711_8c5a_005056ad0002-->200a2290_1ec3_e711_8c5a_005056ad0002 68102290_1ec3_e711_8c5a_005056ad0002-->1c0a2290_1ec3_e711_8c5a_005056ad0002 f4112290_1ec3_e711_8c5a_005056ad0002-->d6072290_1ec3_e711_8c5a_005056ad0002 f4112290_1ec3_e711_8c5a_005056ad0002-->71082290_1ec3_e711_8c5a_005056ad0002 f4112290_1ec3_e711_8c5a_005056ad0002-->c0102290_1ec3_e711_8c5a_005056ad0002 f4112290_1ec3_e711_8c5a_005056ad0002-->9a072290_1ec3_e711_8c5a_005056ad0002 d6072290_1ec3_e711_8c5a_005056ad0002-->1c0a2290_1ec3_e711_8c5a_005056ad0002 71082290_1ec3_e711_8c5a_005056ad0002-->d6072290_1ec3_e711_8c5a_005056ad0002 c0102290_1ec3_e711_8c5a_005056ad0002-->d6072290_1ec3_e711_8c5a_005056ad0002 c0102290_1ec3_e711_8c5a_005056ad0002-->71082290_1ec3_e711_8c5a_005056ad0002 9a072290_1ec3_e711_8c5a_005056ad0002-->d6072290_1ec3_e711_8c5a_005056ad0002 9a072290_1ec3_e711_8c5a_005056ad0002-->71082290_1ec3_e711_8c5a_005056ad0002
graph TB subgraph One a1-->a2 end
graph LR 456ac9b0d15a8b7f1e71073221059886[1051 AAA fa:fa-check] f7f580e11d00a75814d2ded41fe8e8fe[1141 BBB fa:fa-check] 81dc9bdb52d04dc20036dbd8313ed055[1234 CCC fa:fa-check] 456ac9b0d15a8b7f1e71073221059886 -->|Node| f7f580e11d00a75814d2ded41fe8e8fe f7f580e11d00a75814d2ded41fe8e8fe -->|Node| 81dc9bdb52d04dc20036dbd8313ed055 click 456ac9b0d15a8b7f1e71073221059886 "/admin/user/view?id=1051" "AAA 6000" click f7f580e11d00a75814d2ded41fe8e8fe "/admin/user/view?id=1141" "BBB 600" click 81dc9bdb52d04dc20036dbd8313ed055 "/admin/user/view?id=1234" "CCC 3000" style 456ac9b0d15a8b7f1e71073221059886 fill:#f9f,stroke:#333,stroke-width:4px
graph TD A[Christmas] -->|Get money| B(Go shopping) B --> C{Let me think} C -->|One| D[Laptop] C -->|Two| E[iPhone] C -->|Three| F[Car] click A "index.html#link-clicked" "link test" click B testClick "click test" classDef someclass fill:#f96; class A someclass;
sequenceDiagram Alice ->> Bob: Hello Bob, how are you? Bob-->>John: How about you John? Bob--x Alice: I am good thanks! Bob-x John: I am good thanks! Note right of John: Bob thinks a long
long time, so long
that the text does
not fit on a row. Bob-->Alice: Checking with John... alt either this Alice->>John: Yes else or this Alice->>John: No else or this will happen Alice->John: Maybe end par this happens in parallel Alice -->> Bob: Parallel message 1 and Alice -->> John: Parallel message 2 end
gantt dateFormat YYYY-MM-DD axisFormat %d/%m title Adding GANTT diagram to mermaid section A section Completed task :done, des1, 2014-01-06,2014-01-08 Active task :active, des2, 2014-01-09, 3d Future task : des3, after des2, 5d Future task2 : des4, after des3, 5d section Critical tasks Completed task in the critical line :crit, done, 2014-01-06,24h Implement parser and jison :crit, done, after des1, 2d Create tests for parser :crit, active, 3d Future task in critical line :crit, 5d Create tests for renderer :2d Add to mermaid :1d section Documentation Describe gantt syntax :active, a1, after des1, 3d Add gantt diagram to demo page :after a1 , 20h Add another diagram to demo page :doc1, after a1 , 48h section Last section Describe gantt syntax :after doc1, 3d Add gantt diagram to demo page : 20h Add another diagram to demo page : 48h
gitGraph: options { "nodeSpacing": 150, "nodeRadius": 10 } end commit branch newbranch checkout newbranch commit commit checkout master commit commit merge newbranch
classDiagram Class01 <|-- AveryLongClass : Cool Class03 *-- Class04 Class05 o-- Class06 Class07 .. Class08 Class09 --> C2 : Where am i? Class09 --* C3 Class09 --|> Class07 Class07 : equals() Class07 : Object[] elementData Class01 : size() Class01 : int chimp Class01 : int gorilla Class08 <--> C2: Cool label

分布式运维Tips

系统管理与自动化

zipkin

zipdig

AB测试和灰度发布关系是什么

阅读资料 ansible和puppet的安装和比较 翻译-Salt与Ansible全方位比较 Puppet、Chef、Ansible和SaltStack四大运维管理工具 Ansible中文权威指南

容器与容器管理

阅读资料 容器,你还只用Docker吗?(上)

容器,你还只用Docker吗?(下)